- Managing Machine Learning Production Systems
- Deployment Pipelines
- Model Pipelines
- Data Pipelines
- Machine Learning Engineering for Production
- Human-level Performance (HLP)
- Concept Drift
- Model baseline
- Project Scoping and Design
- ML Deployment Challenges
- ML Metadata
- Convolutional Neural Network
Machine Learning Engineering for Production (MLOps) Specialization
Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.
Offered By

What you will learn
Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements.
Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application.
Build data pipelines by gathering, cleaning, and validating datasets. Establish data lifecycle by using data lineage and provenance metadata tools.
Apply best practices and progressive delivery techniques to maintain and monitor a continuously operating production system.
Skills you will gain
About this Specialization
Applied Learning Project
By the end, you'll be ready to
• Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements
• Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application
• Build data pipelines by gathering, cleaning, and validating datasets
• Implement feature engineering, transformation, and selection with TensorFlow Extended
• Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas
• Apply techniques to manage modeling resources and best serve offline/online inference requests
• Use analytics to address model fairness, explainability issues, and mitigate bottlenecks
• Deliver deployment pipelines for model serving that require different infrastructures
• Apply best practices and progressive delivery techniques to maintain a continuously operating production system
Could your company benefit from training employees on in-demand skills?
Try Coursera for BusinessCould your company benefit from training employees on in-demand skills?
Try Coursera for BusinessHow the Specialization Works
Take Courses
A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.
Hands-on Project
Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.
Earn a Certificate
When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

Offered by
Frequently Asked Questions
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
What is machine learning engineering for production? Why is it relevant?
What is the Machine Learning Engineering for Production (MLOps) Specialization about?
What will I be able to do after completing the Machine Learning Engineering in Production (MLOps) Specialization?
What background knowledge is necessary for the Machine Learning Engineering for Production (MLOps) Specialization?
Who is the Machine Learning Engineering for Production (MLOps) Specialization for?
How long does it take to complete the Machine Learning Engineering for Production (MLOps) Specialization?
Who is the Machine Learning Engineering for Production (MLOps) Specialization by?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I apply for financial aid?
Can I audit the Machine Learning Engineering for Production (MLOps) Specialization?
How do I get a receipt to get this reimbursed by my employer?
I want to purchase this Specialization for my employees. How can I do that?
Will I earn university credit for completing the Specialization?
More questions? Visit the Learner Help Center.