What Is Programming? And How To Get Started
January 28, 2025
Article
Master Algorithmic Programming Techniques. Advance your Software Engineering or Data Science Career by Learning Algorithms through Programming and Puzzle Solving. Ace coding interviews by implementing each algorithmic challenge in this Specialization. Apply the newly-learned algorithmic techniques to real-life problems, such as analyzing a huge social network or sequencing a genome of a deadly pathogen.
Instructors: Michael Levin
350,628 already enrolled
Included with
(13,282 reviews)
Recommended experience
Intermediate level
Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.
(13,282 reviews)
Recommended experience
Intermediate level
Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.
Play with 50 algorithmic puzzles on your smartphone to develop your algorithmic intuition! Apply algorithmic techniques (greedy algorithms, binary search, dynamic programming, etc.) and data structures (stacks, queues, trees, graphs, etc.) to solve 100 programming challenges that often appear at interviews at high-tech companies. Get an instant feedback on whether your solution is correct.
Apply the newly learned algorithms to solve real-world challenges: navigating in a Big Network or assembling a genome of a deadly pathogen from millions of short substrings of its DNA.
Learn exactly the same material as undergraduate students in “Algorithms 101” at top universities and more! We are excited that students from various parts of the world are now studying our online materials in the Algorithms 101 classes at their universities. Here is a quote from the website of Professor Sauleh Eetemadi from Iran University of Science and Technology: “After examining syllabus and course material from top universities including Stanford, Princeton and MIT we have chosen to follow the Data Structures and Algorithms Specialization from UCSD...due to excellent course material and its practical approach.”
If you decide to venture beyond Algorithms 101, try to solve more complex programming challenges (flows in networks, linear programming, streaming algorithms, etc.) and complete an equivalent of a graduate course in algorithms!
Add to your LinkedIn profile
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Computer science legend Donald Knuth once said “I don’t understand things unless I try to program them.” We also believe that the best way to learn an algorithm is to program it. However, many excellent books and online courses on algorithms, that excel in introducing algorithmic ideas, have not yet succeeded in teaching you how to implement algorithms, the crucial computer science skill that you have to master at your next job interview. We tried to fill this gap by forming a diverse team of instructors that includes world-leading experts in theoretical and applied algorithms at UCSD (Daniel Kane, Alexander Kulikov, and Pavel Pevzner) and a former software engineer at Google (Neil Rhodes). This unique combination of skills makes this Specialization different from other excellent MOOCs on algorithms that are all developed by theoretical computer scientists. While these MOOCs focus on theory, our Specialization is a mix of algorithmic theory/practice/applications with software engineering. You will learn algorithms by implementing nearly 100 coding problems in a programming language of your choice. To the best of knowledge, no other online course in Algorithms comes close to offering you a wealth of programming challenges (and puzzles!) that you may face at your next job interview. We invested over 3000 hours into designing our challenges as an alternative to multiple choice questions that you usually find in MOOCs.
Applied Learning Project
The specialization contains two real-world projects: Big Networks and Genome Assembly. You will analyze both road networks and social networks and will learn how to compute the shortest route between New York and San Francisco 1000 times faster than the shortest path algorithms you learn in the standard Algorithms 101 course! Afterwards, you will learn how to assemble genomes from millions of short fragments of DNA and how assembly algorithms fuel recent developments in personalized medicine.
Essential algorithmic techniques
Design efficient algorithms
Practice solving algorithmic interview problems
Implement efficient and reliable solutions
A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this online course, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented in different programming languages and will practice implementing them in our programming assignments. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it. You will also learn typical use cases for these data structures.
A few examples of questions that we are going to cover in this class are the following: 1. What is a good strategy of resizing a dynamic array? 2. How priority queues are implemented in C++, Java, and Python? 3. How to implement a hash table so that the amortized running time of all operations is O(1) on average? 4. What are good strategies to keep a binary tree balanced? You will also learn how services like Dropbox manage to upload some large files instantly and to save a lot of storage space!
If you have ever used a navigation service to find optimal route and estimate time to destination, you've used algorithms on graphs. Graphs arise in various real-world situations as there are road networks, computer networks and, most recently, social networks! If you're looking for the fastest time to get to work, cheapest way to connect a set of computers into a network or efficient algorithm to automatically find communities and opinion leaders in Facebook, you're going to work with graphs and algorithms on graphs.
In this online course, you will first learn what a graph is and what are some of the most important properties. Then you'll learn several ways to traverse graphs and how you can do useful things while traversing the graph in some order. We will then talk about shortest paths algorithms — from the basic ones to those which open door for 1000000 times faster algorithms used in Google Maps and other navigational services. You will use these algorithms if you choose to work on our Fast Shortest Routes industrial capstone project. We will finish with minimum spanning trees which are used to plan road, telephone and computer networks and also find applications in clustering and approximate algorithms.
World and internet is full of textual information. We search for information using textual queries, we read websites, books, e-mails. All those are strings from the point of view of computer science. To make sense of all that information and make search efficient, search engines use many string algorithms. Moreover, the emerging field of personalized medicine uses many search algorithms to find disease-causing mutations in the human genome. In this online course you will learn key pattern matching concepts: tries, suffix trees, suffix arrays and even the Burrows-Wheeler transform.
In previous courses of our online specialization you've learned the basic algorithms, and now you are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more typical applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision. We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them in practice. We finish with a soft introduction to streaming algorithms that are heavily used in Big Data processing. Such algorithms are usually designed to be able to process huge datasets without being able even to store a dataset.
In Spring 2011, thousands of people in Germany were hospitalized with a deadly disease that started as food poisoning with bloody diarrhea and often led to kidney failure. It was the beginning of the deadliest outbreak in recent history, caused by a mysterious bacterial strain that we will refer to as E. coli X. Soon, German officials linked the outbreak to a restaurant in Lübeck, where nearly 20% of the patrons had developed bloody diarrhea in a single week. At this point, biologists knew that they were facing a previously unknown pathogen and that traditional methods would not suffice – computational biologists would be needed to assemble and analyze the genome of the newly emerged pathogen.
To investigate the evolutionary origin and pathogenic potential of the outbreak strain, researchers started a crowdsourced research program. They released bacterial DNA sequencing data from one of a patient, which elicited a burst of analyses carried out by computational biologists on four continents. They even used GitHub for the project: https://github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki The 2011 German outbreak represented an early example of epidemiologists collaborating with computational biologists to stop an outbreak. In this online course you will follow in the footsteps of the bioinformaticians investigating the outbreak by developing a program to assemble the genome of the E. coli X from millions of overlapping substrings of the E.coli X genome.
UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
You will be able to apply the right algorithms and data structures in your day-to-day work and write programs that work in some cases many orders of magnitude faster. You'll be able to solve algorithmic problems like those used in the technical interviews at Google, Facebook, Microsoft, Yandex, etc. If you do data science, you'll be able to significantly increase the speed of some of your experiments. You'll also have a completed Capstone either in Bioinformatics or in the Shortest Paths in Road Networks and Social Networks that you can demonstrate to potential employers.
1. Basic knowledge of at least one programming language: C++, Java, Python, C, C#, Javascript, Haskell, Kotlin, Ruby, Rust, Scala.
We expect you to be able to implement programs that: 1) read data from the standard input (in most cases, the input is a sequence of integers); 2) compute the result (in most cases, a few loops are enough for this); 3) print the result to the standard output. For each programming challenge in this course, we provide starter solutions in C++, Java, and Python. The best way to check whether your programming skills are enough to go through problems in this specialization is to solve two problems from the first week. If you are able to pass them (after reading our tutorials), then you will definitely be able to pass the course.
2. Basic knowledge of discrete mathematics: proof by induction, proof by contradiction.
Knowledge of discrete mathematics is necessary for analyzing algorithms (proving correctness, estimating running time) and for algorithmic thinking in general. If you want to refresh your discrete mathematics skills, we encourage you to go through our partner specialization — Introduction to Discrete Mathematics for Computer Science (https://www.coursera.org/specializations/discrete-mathematics). It teaches the basics of discrete mathematics in try-this-before-we-explain-everything approach: you will be solving many interactive puzzles that were carefully designed to allow you to invent many of the important ideas and concepts yoursel
We believe that learning the theory behind algorithms (like in most Algorithms 101 courses taught at 1000s universities) is important but not sufficient for a professional computer scientist today. This specialization combines the theory of algorithms with many programming challenges. In contrast with many Algorithms 101 courses, you will implement over 100 algorithmic problems in the programming language of your choice. And you will see yourself that the best way to understand an algorithm is to implement it!
Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-8 months.
Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.
Basic knowledge of at least one programming language (C/C++, Java, Python): loops, arrays, stacks, recursion. Basic knowledge of mathematics: proof by induction, proof by contradiction.
We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.
Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.
The lectures in this specialization will be self-contained. Most lectures will be based on the bestselling textbook "Algorithms" co-authored by Sanjoy Dasgupta from University of California at San Diego as well as Christos Papadimitriou and Umesh Vazirani from University of California at Berkeley. In addition to UCSD and Berkeley, the textbook has been adopted in over 100 top universities and is available on Internet.
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.