Creating a Wordcloud using NLP and TF-IDF in Python

Offered By
In this Guided Project, you will:

Learn how to clean a dataset by removing encodings and unwanted words/characters

Learn how to lemmatize a text and fit a TF-IDF model

Learn how to create a wordcloud using TF-IDF scores

1.5 hours
Beginner
No download needed
Split-screen video
English
Desktop only

By the end of this project, you will learn how to create a professional looking wordcloud from a text dataset in Python. You will use an open source dataset containing Christmas recipes and will create a wordcloud of the most important ingredients used in these recipes. I will teach you how load a JSON dataset, clean the dataset by removing encodings and unwanted characters, and lemmatize your dataset. I will also teach you how to calculate TF-IDF weights of words in your dataset and use these weights to create a wordcloud. You will create a ready-to-use Jupyter notebook for creating a wordcloud on any text dataset. Lemmatization is a process of removing inflectional endings only and to return the base or dictionary form of a word, which is known as the lemma. TF-IDF stands for term frequency-inverse document frequency. TF-IDF gives a weight to each word which tells how important that term is. Using both lemmatization and TF-IDF, one can find the important words in the text dataset and use these important words to create the wordcloud. For example, these datasets could be customer complaints and the business can focus on the important issues that the customers are facing. Wordcloud is a powerful resource which can be used in reports and presentations. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

  • Natural Language Toolkit (NLTK)

  • Python Programming

  • Term Frequency Inverse Document Frequency (TF-IDF)

  • Wordnet

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Load a JSON dataset in Python

  2. Clean the dataset

  3. Remove encodings

  4. Lemmatize the text

  5. Fit TF-IDF model

  6. Create a Wordcloud

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.